Semimatroids and their Tutte polynomials

نویسندگان

  • Federico Ardila
  • FEDERICO ARDILA
چکیده

We define and study semimatroids, a class of objects which abstracts the dependence properties of an affine hyperplane arrangement. We show that geometric semilattices are precisely the posets of flats of semimatroids. We define and investigate the Tutte polynomial of a semimatroid. We prove that it is the universal Tutte-Grothendieck invariant for semimatroids, and we give a combinatorial interpretation for its non-negative integer coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

Tutte polynomials of hyperplane arrangements and the finite field method

The Tutte polynomial is a fundamental invariant associated to a graph, matroid, vector arrangement, or hyperplane arrangement, which answers a wide variety of questions about its underlying object. This short survey focuses on some of the most important results on Tutte polynomials of hyperplane arrangements. We show that many enumerative, algebraic, geometric, and topological invariants of a h...

متن کامل

Graph Polynomials and Their Applications I: The Tutte Polynomial

We begin our exploration of graph polynomials and their applications with the Tutte polynomial, a renown tool for analyzing properties of graphs and networks. This two-variable graph polynomial, due to W. T. Tutte [Tut47,Tut54, Tut67], has the important universal property that essentially any multiplicative graph invariant with a deletion/contraction reduction must be an evaluation of it. These...

متن کامل

The arithmetic Tutte polynomials of the classical root systems

Many combinatorial and topological invariants of a hyperplane arrangement can be computed in terms of its Tutte polynomial. Similarly, many invariants of a hypertoric arrangement can be computed in terms of its arithmetic Tutte polynomial. We compute the arithmetic Tutte polynomials of the classical root systems An, Bn, Cn, and Dn with respect to their integer, root, and weight lattices. We do ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004